- 3.2 If the recovery rate was 5 barrels per day, the ratio of rate of well to rate of recovery would be 2, so the facility operator would use Method A. The production volume would have been: - $30 \text{ days} \times 10 \text{ barrels per day=300 barrels}$ - [59 FR 34110, July 1, 1994; 59 FR 49006, Sept. 26, 1994, as amended at 65 FR 40800, June 30, 2000; 67 FR 47152, July 17, 2002] - APPENDIX E TO PART 112—DETERMINATION AND EVALUATION OF REQUIRED RESPONSE RESOURCES FOR FACILITY RESPONSE PLANS #### 1.0 Purpose and Definitions - 1.1 The purpose of this appendix is to describe the procedures to identify response resources to meet the requirements of §112.20. To identify response resources to meet the facility response plan requirements of 40 CFR 112.20(h), owners or operators shall follow this appendix or, where not appropriate, shall clearly demonstrate in the response plan why use of this appendix is not appropriate at the facility and make comparable arrangements for response resources. - 1.2 Definitions. - 1.2.1 Animal fat means a non-petroleum oil, fat, or grease of animal, fish, or marine mammal origin. Animal fats are further classified based on specific gravity as follows: - (1) Group A—specific gravity less than 0.8. - (2) Group B—specific gravity equal to or greater than 0.8 and less than 1.0. - (3) Group C—specific gravity equal to or greater than 1.0. - 1.2.2 Nearshore is an operating area defined as extending seaward 12 miles from the boundary lines defined in 46 CFR part 7, except in the Gulf of Mexico. In the Gulf of Mexico, it means the area extending 12 miles from the line of demarcation (COLREG lines) defined in 49 CFR 80.740 and 80.850. - 1.2.3 Non-persistent oils or Group 1 oils include: - (1) A petroleum-based oil that, at the time of shipment, consists of hydrocarbon fractions: - (A) At least 50 percent of which by volume, distill at a temperature of 340 degrees C (645 degrees F); and - (B) At least 95 percent of which by volume, distill at a temperature of 370 degrees C (700 degrees F); and - (2) A non-petroleum oil, other than an animal fat or vegetable oil, with a specific gravity less than 0.8. - 1.2.4 Non-petroleum oil means oil of any kind that is not petroleum-based, including but not limited to: fats, oils, and greases of animal, fish, or marine mammal origin; and vegetable oils, including oils from seeds, nuts, fruits, and kernels. - 1.2.5 Ocean means the nearshore area. - 1.2.6 Operating area means Rivers and Canals, Inland, Nearshore, and Great Lakes geographic location(s) in which a facility is handling, storing, or transporting oil. - 1.2.7 Operating environment means Rivers and Canals, Inland, Great Lakes, or Ocean. These terms are used to define the conditions in which response equipment is designed to function. - 1.2.8 Persistent oils include: - (1) A petroleum-based oil that does not meet the distillation criteria for a non-persistent oil. Persistent oils are further classified based on specific gravity as follows: - (A) Group 2—specific gravity less than 0.85; - (B) Group 3—specific gravity equal to or greater than 0.85 and less than 0.95; - (C) Group 4—specific gravity equal to or greater than 0.95 and less than 1.0; or - (D) Group 5—specific gravity equal to or greater than 1.0. - (2) A non-petroleum oil, other than an animal fat or vegetable oil, with a specific gravity of 0.8 or greater. These oils are further classified based on specific gravity as follows: - (A) Group 2—specific gravity equal to or greater than 0.8 and less than 0.85; - (B) Group 3—specific gravity equal to or greater than 0.85 and less than 0.95; - (C) Group 4—specific gravity equal to or greater than 0.95 and less than 1.0; or - (D) Group 5—specific gravity equal to or greater than 1.0. - 1.2.9 Vegetable oil means a non-petroleum oil or fat of vegetable origin, including but not limited to oils and fats derived from plant seeds, nuts, fruits, and kernels. Vegetable oils are further classified based on specific gravity as follows: - (1) Group A—specific gravity less than 0.8. - (2) Group B—specific gravity equal to or greater than 0.8 and less than 1.0. - (3) Group C—specific gravity equal to or greater than 1.0. - 1.2.10 Other definitions are included in §112.2, section 1.1 of Appendix C, and section 3.0 of Appendix F. #### 2.0 Equipment Operability and Readiness - 2.1 All equipment identified in a response plan must be designed to operate in the conditions expected in the facility's geographic area (i.e., operating environment). These conditions vary widely based on location and season. Therefore, it is difficult to identify a single stockpile of response equipment that will function effectively in each geographic location (i.e., operating area). - 2.2 Facilities handling, storing, or transporting oil in more than one operating environment as indicated in Table 1 of this appendix must identify equipment capable of successfully functioning in each operating environment. - 2.3 When identifying equipment for the response plan (based on the use of this appendix), a facility owner or operator must consider the inherent limitations of the operability of equipment components and response systems. The criteria in Table 1 of this appendix shall be used to evaluate the operability in a given environment. These criteria reflect the general conditions in certain operating environments. - 2.3.1 The Regional Administrator may require documentation that the boom identified in a facility response plan meets the criteria in Table 1 of this appendix. Absent acceptable documentation, the Regional Administrator may require that the boom be tested to demonstrate that it meets the criteria in Table 1 of this appendix. Testing must be in accordance with ASTM F 715, ASTM F 989, or other tests approved by EPA as deemed appropriate (see Appendix E to this part, section 13, for general availability of documents). - 2.4 Table I of this appendix lists criteria for oil recovery devices and boom. All other equipment necessary to sustain or support response operations in an operating environment must be designed to function in the same conditions. For example, boats that deploy or support skimmers or boom must be capable of being safely operated in the significant wave heights listed for the applicable operating environment. - 2.5 A facility owner or operator shall refer to the applicable Area Contingency Plan (ACP), where available, to determine if ice, debris, and weather-related visibility are significant factors to evaluate the operability of equipment. The ACP may also identify the average temperature ranges expected in the facility's operating area. All equipment identified in a response plan must be designed to operate within those conditions or ranges. - 2.6 This appendix provides information on response resource mobilization and response times. The distance of the facility from the storage location of the response resources must be used to determine whether the resources can arrive on-scene within the stated time. A facility owner or operator shall include the time for notification, mobilization, and travel of resources identified to meet the medium and Tier 1 worst case discharge requirements identified in sections 4.3 and 9.3 of this appendix (for medium discharges) and section 5.3 of this appendix (for worst case discharges). The facility owner or operator must plan for notification and mobilization of Tier 2 and 3 response resources as necessary to meet the requirements for arrival on-scene in accordance with section 5.3 of this appendix. An on-water speed of 5 knots and a land speed of 35 miles per hour is assumed, unless the facility owner or operator can demonstrate otherwise. - 2.7 In identifying equipment, the facility owner or operator shall list the storage loca- - tion, quantity, and manufacturer's make and model. For oil recovery devices, the effective daily recovery capacity, as determined using section 6 of this appendix, must be included. For boom, the overall boom height (draft and freeboard) shall be included. A facility owner or operator is responsible for ensuring that the identified boom has compatible connectors. - 3.0 Determining Response Resources Required for Small Discharges—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils - 3.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a small discharge. A small discharge is defined as any discharge volume less than or equal to 2,100 gallons, but not to exceed the calculated worst case discharge. The equipment must be designed to function in the operating environment at the point of expected use. - 3.2 Complexes that are regulated by EPA and the United States Coast Guard (USCG) must also consider planning quantities for the transportation-related transfer portion of the facility. - 3.2.1 Petroleum oils. The USCG planning level that corresponds to EPA's "small discharge" is termed "the average most probable discharge." A USCG rule found at 33 CFR 154.1020 defines "the average most probable discharge" as the lesser of 50 barrels (2,100 gallons) or 1 percent of the volume of the worst case discharge. Owners or operators of complexes that handle, store, or transport petroleum oils must compare oil discharge volumes for a small discharge and an average most probable discharge, and plan for whichever quantity is greater. - 3.2.2 Non-petroleum oils other than animal fats and vegetable oils. Owners or operators of complexes that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils must plan for oil discharge volumes for a small discharge. There is no USCG planning level that directly corresponds to EPA's "small discharge." However, the USCG (at 33 CFR 154.545) has requirements to identify equipment to contain oil resulting from an operational discharge. - 3.3 The response resources
shall, as appropriate, include: - 3.3.1 One thousand feet of containment boom (or, for complexes with marine transfer components, 1,000 feet of containment boom or two times the length of the largest vessel that regularly conducts oil transfers to or from the facility, whichever is greater), and a means of deploying it within 1 hour of the discovery of a discharge: - 3.3.2 Oil recovery devices with an effective daily recovery capacity equal to the amount of oil discharged in a small discharge or greater which is available at the facility within 2 hours of the detection of an oil discharge; and 3.3.3 Oil storage capacity for recovered oily material indicated in section 12.2 of this appendix. - 4.0 Determining Response Resources Required for Medium Discharges—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils - 4.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a medium discharge of oil for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix. - 4.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the transportation-related transfer portion of the facility. - 4.2.1 Petroleum oils. The USCG planning level that corresponds to EPA's "medium discharge" is termed "the maximum most probable discharge." The USCG rule found at 33 CFR part 154 defines "the maximum most probable discharge" as a discharge of 1,200 barrels (50,400 gallons) or 10 percent of the worst case discharge, whichever is less. Owners or operators of complexes that handle, store, or transport petroleum oils must compare calculated discharge volumes for a medium discharge and a maximum most probable discharge, and plan for whichever quantity is greater. - 4.2.2 Non-petroleum oils other than animal fats and vegetable oils. Owners or operators of complexes that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils must plan for oil discharge volumes for a medium discharge. For non-petroleum oils, there is no USCG planning level that directly corresponds to EPA's "medium discharge." - 4.3 Oil recovery devices identified to meet the applicable medium discharge volume planning criteria must be located such that they are capable of arriving on-scene within 6 hours in higher volume port areas and the Great Lakes and within 12 hours in all other areas. Higher volume port areas and Great Lakes areas are defined in section 1.1 of Appendix C to this part. - 4.4 Because rapid control, containment, and removal of oil are critical to reduce discharge impact, the owner or operator must determine response resources using an effective daily recovery capacity for oil recovery devices equal to 50 percent of the planning volume applicable for the facility as determined in section 4.1 of this appendix. The effective daily recovery capacity for oil recov- ery devices identified in the plan must be determined using the criteria in section 6 of this appendix. - 4.5 In addition to oil recovery capacity, the plan shall, as appropriate, identify sufficient quantity of containment boom available, by contract or other approved means as described in §112.2, to arrive within the required response times for oil collection and containment and for protection of fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (see Appendix E to this part, section 13, for availability) and the applicable ACP. Although 40 CFR part 112 does not set required quantities of boom for oil collection and containment, the response plan shall identify and ensure, by contract or other approved means as described in §112.2, the availability of the quantity of boom identified in the plan for this purpose. - 4.6 The plan must indicate the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient to meet this level, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity. - 4.7 The following is an example of a medium discharge volume planning calculation for equipment identification in a higher volume port area: The facility's largest aboveground storage tank volume is 840.000 gallons. Ten percent of this capacity is 84,000 gallons. Because 10 percent of the facility's largest tank, or 84,000 gallons, is greater than 36,000 gallons, 36,000 gallons is used as the planning volume. The effective daily recovery capacity is 50 percent of the planning volume, or 18,000 gallons per day. The ability of oil recovery devices to meet this capacity must be calculated using the procedures in section 6 of this appendix. Temporary storage capacity available on-scene must equal twice the daily recovery capacity as indicated in section 12.2 of this appendix, or 36,000 gallons per day. This is the information the facility owner or operator must use to identify and ensure the availability of the required response resources, by contract or other approved means as described in §112.2. The facility owner shall also identify how much boom is available for use. - 5.0 Determining Response Resources Required for the Worst Case Discharge to the Maximum Extent Practicable - 5.1 A facility owner or operator shall identify and ensure the availability of, by contract or other approved means as described in §112.2, sufficient response resources to respond to the worst case discharge of oil to the maximum extent practicable. Sections 7 and 10 of this appendix describe the method to determine the necessary response resources. Worksheets are provided as Attachments E-1 and E-2 at the end of this appendix to simplify the procedures involved in calculating the planning volume for response resources for the worst case discharge. 5.1 A facility owner or operator shall identify and ensure the availability of, by contract or other approved means as described in \$112.2, sufficient response resources to respond to the worst case discharge of oil to the maximum extent practicable. Sections 7 and 10 of this appendix describe the method to determine the necessary response resources. Worksheets are provided as Attachments E-1 and E-2 at the end of this appendix to simplify the procedures involved in calculating the planning volume for response resources for the worst case discharge. 5.2 Complexes that are regulated by EPA and the USCG must also consider planning for the worst case discharge at the transportation-related portion of the facility. The USCG requires that transportation-related facility owners or operators use a different calculation for the worst case discharge in the revisions to 33 CFR part 154. Owners or operators of complex facilities that are regulated by EPA and the USCG must compare both calculations of worst case discharge derived by EPA and the USCG and plan for whichever volume is greater. 5.3 Oil discharge response resources identified in the response plan and available, by contract or other approved means as described in §112.2, to meet the applicable worst case discharge planning volume must be located such that they are capable of arriving at the scene of a discharge within the times specified for the applicable response tier listed as follows | | Tier 1 | Tier 2 | Tier 3 | |--------------------------|------------|------------|------------| | | (in hours) | (in hours) | (in hours) | | Higher volume port areas | 6 | 30 | 54 | | | 12 | 36 | 60 | | | 12 | 36 | 60 | The three levels of response tiers apply to the amount of time in which facility owners or operators must plan for response resources to arrive at the scene of a discharge to respond to the worst case discharge planning volume. For example, at a worst case discharge in an inland area, the first tier of response resources (i.e., that amount of onwater and shoreline cleanup capacity necessary to respond to the fraction of the worst case discharge as indicated through the series of steps described in sections 7.2 and 7.3 or sections 10.2 and 10.3 of this appendix) would arrive at the scene of the discharge within 12 hours; the second tier of response resources would arrive within 36 hours; and the third tier of response resources would arrive within 60 hours. 5.4 The effective daily recovery capacity for oil recovery devices identified in the response plan must be determined using the criteria in section 6 of this appendix. A facility owner or operator shall identify the storage locations of all response resources used for each tier. The owner or operator of a facility whose required daily recovery capacity exceeds the applicable contracting caps in Table 5 of this appendix shall, as appropriate, identify sources of additional equipment, their location, and the arrangements made to obtain this equipment during a response. The owner or operator of a facility whose calculated planning volume exceeds the applicable contracting caps in Table 5 of this appendix shall, as appropriate, identify sources of additional equipment equal to twice the cap listed in Tier 3 or the amount necessary to reach the calculated planning volume, whichever is lower. The resources identified above the cap shall be capable of arriving on-scene not later than the Tier 3 response times in section 5.3 of this appendix. No contract is required. While general listings of available response equipment may be used to identify additional sources (i.e., 'public' resources vs. "private" resources), the response
plan shall identify the specific sources, locations, and quantities of equipment that a facility owner or operator has considered in his or her planning. When listing USCG-classified oil spill removal organization(s) that have sufficient removal capacity to recover the volume above the response capacity cap for the specific facility, as specified in Table 5 of this appendix, it is not necessary to list specific quantities of equipment. 5.5 A facility owner or operator shall identify the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity. 5.6 When selecting response resources necessary to meet the response plan requirements, the facility owner or operator shall, as appropriate, ensure that a portion of those resources is capable of being used in close-to-shore response activities in shallow water. For any EPA-regulated facility that is required to plan for response in shallow water, at least 20 percent of the on-water response equipment identified for the applicable operating area shall, as appropriate, be capable of operating in water of 6 feet or less depth. 5.7 In addition to oil spill recovery devices, a facility owner or operator shall identify sufficient quantities of boom that are available, by contract or other approved means as described in §112.2, to arrive onscene within the specified response times for oil containment and collection. The specific quantity of boom required for collection and containment will depend on the facility-specific information and response strategies employed. A facility owner or operator shall, as appropriate, also identify sufficient quantities of oil containment boom to protect fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (see Appendix E to this part, section 13, for availability), and the applicable ACP. Refer to this guidance document for the number of days and geographic areas (i.e., operating environments) specified in Table 2 and Table 6 of this appendix. 5.8 A facility owner or operator shall also identify, by contract or other approved means as described in §112.2, the availability of an oil spill removal organization(s) (as described in §112.2) capable of responding to a shoreline cleanup operation involving the calculated volume of oil and emulsified oil that might impact the affected shoreline. The volume of oil that shall, as appropriate, be planned for is calculated through the application of factors contained in Tables 2, 3, 6, and 7 of this appendix. The volume calculated from these tables is intended to assist the facility owner or operator to identify an oil spill removal organization with sufficient resources and expertise. #### 6.0 Determining Effective Daily Recovery Capacity for Oil Recovery Devices 6.1 Oil recovery devices identified by a facility owner or operator must be identified by the manufacturer, model, and effective daily recovery capacity. These capacities must be used to determine whether there is sufficient capacity to meet the applicable planning criteria for a small discharge, a medium discharge, and a worst case discharge to the maximum extent practicable. 6.2 To determine the effective daily recovery capacity of oil recovery devices, the formula listed in section 6.2.1 of this appendix shall be used. This formula considers potential limitations due to available daylight, weather, sea state, and percentage of emulsified oil in the recovered material. The RA may assign a lower efficiency factor to equipment listed in a response plan if it is determined that such a reduction is warranted. 6.2.1 The following formula shall be used to calculate the effective daily recovery capacity: $R = T \times 24 \text{ hours} \times E$ where: R—Effective daily recovery capacity; T—Throughput rate in barrels per hour (nameplate capacity); and E—20 percent efficiency factor (or lower factor as determined by the Regional Administrator). 6.2.2 For those devices in which the pump limits the throughput of liquid, throughput rate shall be calculated using the pump capacity. 6.2.3 For belt or moptype devices, the throughput rate shall be calculated using the speed of the belt or mop through the device, assumed thickness of oil adhering to or collected by the device, and surface area of the belt or mop. For purposes of this calculation, the assumed thickness of oil will be ¼ inch. 6.2.4 Facility owners or operators that include oil recovery devices whose throughput is not measurable using a pump capacity or belt/mop speed may provide information to support an alternative method of calculation. This information must be submitted following the procedures in section 6.3.2 of this appendix. 6.3 As an alternative to section 6.2 of this appendix, a facility owner or operator may submit adequate evidence that a different effective daily recovery capacity should be applied for a specific oil recovery device. Adequate evidence is actual verified performance data in discharge conditions or tests using American Society of Testing and Materials (ASTM) Standard F 631-99, F 808-83 (1999), or an equivalent test approved by EPA as deemed appropriate (see Appendix E to this part, section 13, for general availability of documents). 6.3.1 The following formula must be used to calculate the effective daily recovery capacity under this alternative: $R = D \times U$ where R—Effective daily recovery capacity; D—Average Oil Recovery Rate in barrels per hour (Item 26 in F 808-83; Item 13.2.16 in F 631-99; or actual performance data); and U—Hours per day that equipment can operate under discharge conditions. Ten hours per day must be used unless a facility owner or operator can demonstrate that the recovery operation can be sustained for longer periods. 6.3.2 A facility owner or operator submitting a response plan shall provide data that supports the effective daily recovery capacities for the oil recovery devices listed. The following is an example of these calculations: (1) A weir skimmer identified in a response plan has a manufacturer's rated throughput at the pump of 267 gallons per minute (gpm). 267 gpm=381 barrels per hour (bph) R=381 bph×24 hr/day×0.2=1,829 barrels per day (2) After testing using ASTM procedures, the skimmer's oil recovery rate is determined to be 220 gpm. The facility owner or operator identifies sufficient resources available to support operations for 12 hours per day. 220 gpm=314 bph R=314 bph×12 hr/day=3,768 barrels per day - (3) The facility owner or operator will be able to use the higher capacity if sufficient temporary oil storage capacity is available. Determination of alternative efficiency factors under section 6.2 of this appendix or the acceptability of an alternative effective daily recovery capacity under section 6.3 of this appendix will be made by the Regional Administrator as deemed appropriate. - 7.0 Calculating Planning Volumes for a Worst Case Discharge—Petroleum Oils and Non-Petroleum Oils Other Than Animal Fats and Vegetable Oils - 7.1 A facility owner or operator shall plan for a response to the facility's worst case discharge. The planning for on-water oil recovery must take into account a loss of some oil to the environment due to evaporative and natural dissipation, potential increases in volume due to emulsification, and the potential for deposition of oil on the shoreline. The procedures for non-petroleum oils other than animal fats and vegetable oils are discussed in section 7.7 of this appendix. - 7.2 The following procedures must be used by a facility owner or operator in determining the required on-water oil recovery capacity: 7.2.1 The following must be determined: the worst case discharge volume of oil in the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility [persistent (Groups 2, 3, 4, 5) or non-persistent (Group 1)]; and the facility's specific operating area. See sections 1.2.3 and 1.2.8 of this appendix for the definitions of non-persistent and persistent oils, respectively. Facilities that handle, store, or transport oil from different oil groups must calculate each group separately, unless the oil group constitutes 10 percent or less by volume of the facility's total oil storage capacity. This information is to be used with Table 2 of this appendix to determine the percentages of the total volume to be used for removal capacity planning. Table 2 of this appendix divides the volume into three categories: oil lost to the environment; oil deposited on the shoreline; and oil available for on-water recovery. 7.2.2 The on-water oil recovery volume shall, as appropriate, be adjusted using the appropriate emulsification factor found in Table 3 of this appendix. Facilities that handle, store, or transport oil from different petroleum groups must compare the on-water recovery volume for each oil group (unless the oil group constitutes 10 percent or less by volume of the facility's total storage capacity) and use the calculation that results in the largest on-water oil recovery volume to plan for the amount of response resources for a worst case discharge. 7.2.3 The adjusted volume is multiplied by the on-water oil recovery resource mobilization factor found in Table 4 of this appendix from the appropriate operating area and response tier to determine the total on-water oil recovery capacity in barrels per day that must be identified or contracted to arrive on-scene within the applicable time for each response tier. Three tiers are specified. For higher volume port areas, the contracted tiers of resources must be located such that they are capable of arriving on-scene within
6 hours for Tier 1, 30 hours for Tier 2, and 54 hours for Tier 3 of the discovery of an oil discharge. For all other rivers and canals, inland, nearshore areas, and the Great Lakes, these tiers are 12, 36, and 60 hours. 7.2.4 The resulting on-water oil recovery capacity in barrels per day for each tier is used to identify response resources necessary to sustain operations in the applicable operating area. The equipment shall be capable of sustaining operations for the time period specified in Table 2 of this appendix. The facility owner or operator shall identify and ensure the availability, by contract or other approved means as described in §112.2, of sufficient oil spill recovery devices to provide the effective daily oil recovery capacity required. If the required capacity exceeds the applicable cap specified in Table 5 of this appendix, then a facility owner or operator shall ensure, by contract or other approved means as described in §112.2, only for the quantity of resources required to meet the cap, but shall identify sources of additional resources as indicated in section 5.4 of this appendix. The owner or operator of a facility whose planning volume exceeded the cap in 1993 must make arrangements to identify and ensure the availability, by contract or other approved means as described in \$112.2. for additional capacity to be under contract by 1998 or 2003, as appropriate. For a facility that handles multiple groups of oil, the required effective daily recovery capacity for each oil group is calculated before applying the cap. The oil group calculation resulting in the largest on-water recovery volume must be used to plan for the amount of response resources for a worst case discharge, unless the oil group comprises 10 percent or less by volume of the facility's total oil storage capacity. 7.3 The procedures discussed in sections 7.3.1–7.3.3 of this appendix must be used to calculate the planning volume for identifying shoreline cleanup capacity (for Group 1 through Group 4 oils). 7.3.1 The following must be determined: the worst case discharge volume of oil for the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility [persistent (Groups 2, 3, or 4) or non-persistent (Group 1)]; and the geographic area(s) in which the facility operates (i.e., operating areas). For a facility handling, storing, or transporting oil from different groups, each group must be calculated separately. Using this information, Table 2 of this appendix must be used to determine the percentages of the total volume to be used for shoreline cleanup resource planning. 7.3.2 The shoreline cleanup planning volume must be adjusted to reflect an emulsification factor using the same procedure as described in section 7.2.2 of this appendix. 7.3.3 The resulting volume shall be used to identify an oil spill removal organization with the appropriate shoreline cleanup capability. 7.4 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group 1 through Group 4 oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual located at the facility to work with the fire department for Group 1 through Group 4 oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. 7.5 The following is an example of the procedure described above in sections 7.2 and 7.3 of this appendix: A facility with a 270,000 barrel (11.3 million gallons) capacity for #6 oil (specific gravity 0.96) is located in a higher volume port area. The facility is on a peninsula and has docks on both the ocean and bay sides. The facility has four aboveground oil storage tanks with a combined total capacity of 80,000 barrels (3.36 million gallons) and no secondary containment. The remaining facility tanks are inside secondary con- tainment structures. The largest above-ground oil storage tank (90,000 barrels or 3.78 million gallons) has its own secondary containment. Two 50,000 barrel (2.1 million gallon) tanks (that are not connected by a manifold) are within a common secondary containment tank area, which is capable of holding 100,000 barrels (4.2 million gallons) plus sufficient freeboard. 7.5.1 The worst case discharge for the facility is calculated by adding the capacity of all aboveground oil storage tanks without secondary containment (80,000 barrels) plus the capacity of the largest aboveground oil storage tank inside secondary containment. The resulting worst case discharge volume is 170,000 barrels or 7.14 million gallons. 7.5.2 Because the requirements for Tiers 1. 2, and 3 for inland and nearshore exceed the cans identified in Table 5 of this appendix, the facility owner will contract for a response to 10,000 barrels per day (bpd) for Tier 1, 20,000 bpd for Tier 2, and 40.000 bpd for Tier 3. Resources for the remaining 7,850 bpd for Tier 1, 9,750 bpd for Tier 2, and 7,600 bpd for Tier 3 shall be identified but need not be contracted for in advance. The facility owner or operator shall, as appropriate, also identify or contract for quantities of boom identified in their response plan for the protection of fish and wildlife and sensitive environments within the area potentially impacted by a worst case discharge from the facility. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments," (see Appendix E to this part, section 13, for availability) and the applicable ACP. Attachment C-III to Appendix C provides a method for calculating a planning distance to fish and wildlife and sensitive environments and public drinking water intakes that may be impacted in the event of a worst case discharge. 7.6 The procedures discussed in sections 7.6.1–7.6.3 of this appendix must be used to determine appropriate response resources for facilities with Group 5 oils. 7.6.1 The owner or operator of a facility that handles, stores, or transports Group 5 oils shall, as appropriate, identify the response resources available by contract or other approved means, as described in §112.2. The equipment identified in a response plan shall, as appropriate, include: (1) Sonar, sampling equipment, or other methods for locating the oil on the bottom or suspended in the water column; (2) Containment boom, sorbent boom, silt curtains, or other methods for containing the oil that may remain floating on the surface or to reduce spreading on the bottom; (3) Dredges, pumps, or other equipment necessary to recover oil from the bottom and shoreline: - (4) Equipment necessary to assess the impact of such discharges; and - (5) Other appropriate equipment necessary to respond to a discharge involving the type of oil handled, stored, or transported. - 7.6.2 Response resources identified in a response plan for a facility that handles, stores, or transports Group 5 oils under section 7.6.1 of this appendix shall be capable of being deployed (on site) within 24 hours of discovery of a discharge to the area where the facility is operating. - 7.6.3 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group 5 oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for Group 5 oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. - 7.7 Non-petroleum oils other than animal fats and vegetable oils. The procedures described in sections 7.7.1 through 7.7.5 of this appendix must be used to determine appropriate response plan development and evaluation criteria for facilities that handle, store, or transport non-petroleum oils other than animal fats and vegetable oils. Refer to section 11 of this appendix for information on the limitations on the use of chemical agents for inland and nearshore areas. - 7.7.1 An owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must provide information in his or her plan that identifies: - (1) Procedures and strategies for responding to a worst case discharge to the maximum extent practicable; and - (2) Sources of the equipment and supplies necessary to locate, recover, and mitigate such a discharge. - 7.7.2 An owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must ensure that any equipment identified in a response plan is capable of operating in the conditions expected in the geographic area(s) (i.e., operating environments) in which the facility operates using the criteria in Table 1 of this appendix. When evaluating the operability of
equipment, the facility owner or operator must consider lim- itations that are identified in the appropriate ACPs, including: - (1) Ice conditions; - (2) Debris: - (3) Temperature ranges: and - (4) Weather-related visibility. - 7.7.3 The owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils must identify the response resources that are available by contract or other approved means, as described in §112.2. The equipment described in the response plan shall, as appropriate, include: - (1) Containment boom, sorbent boom, or other methods for containing oil floating on the surface or to protect shorelines from impact: - (2) Oil recovery devices appropriate for the type of non-petroleum oil carried; and - (3) Other appropriate equipment necessary to respond to a discharge involving the type of oil carried. - 7.7.4 Response resources identified in a response plan according to section 7.7.3 of this appendix must be capable of commencing an effective on-scene response within the applicable tier response times in section 5.3 of this appendix. - 7.7.5 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports non-petroleum oils other than animal fats and vegetable oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual located at the facility to work with the fire department for fires of these oils. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. - 8.0 Determining Response Resources Required for Small Discharges—Animal Fats and Vegetable Oils - 8.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a small discharge of animal fats or vegetable oils. A small discharge is defined as any discharge volume less than or equal to 2,100 gallons, but not to exceed the calculated worst case discharge. The equipment must be designed to function in the operating environment at the point of expected use. - 8.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the marine transportation-related portion of the facility. - 8.2.1 The USCG planning level that corresponds to EPA's "small discharge" is termed "the average most probable discharge." A USCG rule found at 33 CFR 154.1020 defines "the average most probable discharge" as the lesser of 50 barrels (2,100 gallons) or 1 percent of the volume of the worst case discharge. Owners or operators of complexes that handle, store, or transport animal fats and vegetable oils must compare oil discharge volumes for a small discharge and an average most probable discharge, and plan for whichever quantity is greater. - 8.3 The response resources shall, as appropriate, include: - 8.3.1 One thousand feet of containment boom (or, for complexes with marine transfer components, 1,000 feet of containment boom or two times the length of the largest vessel that regularly conducts oil transfers to or from the facility, whichever is greater), and a means of deploying it within 1 hour of the discovery of a discharge; - 8.3.2 Oil recovery devices with an effective daily recovery capacity equal to the amount of oil discharged in a small discharge or greater which is available at the facility within 2 hours of the detection of a discharge; and - 8.3.3 Oil storage capacity for recovered oily material indicated in section 12.2 of this appendix. - 9.0 Determining Response Resources Required for Medium Discharges—Animal Fats and Vegetable Oils - 9.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a medium discharge of animal fats or vegetable oils for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix. - 9.2 Complexes that are regulated by EPA and the USCG must also consider planning quantities for the transportation-related transfer portion of the facility. Owners or operators of complexes that handle, store, or transport animal fats or vegetable oils must plan for oil discharge volumes for a medium discharge. For non-petroleum oils, there is no USCG planning level that directly corresponds to EPA's "medium discharge." Although the USCG does not have planning requirements for medium discharges, they do have requirements (at 33 CFR 154.545) to identify equipment to contain oil resulting from an operational discharge. - 9.3 Oil recovery devices identified to meet the applicable medium discharge volume planning criteria must be located such that they are capable of arriving on-scene within 6 hours in higher volume port areas and the Great Lakes and within 12 hours in all other areas. Higher volume port areas and Great Lakes areas are defined in section 1.1 of Appendix C to this part. - 9.4 Because rapid control, containment, and removal of oil are critical to reduce discharge impact, the owner or operator must determine response resources using an effective daily recovery capacity for oil recovery devices equal to 50 percent of the planning volume applicable for the facility as determined in section 9.1 of this appendix. The effective daily recovery capacity for oil recovery devices identified in the plan must be determined using the criteria in section 6 of this appendix. - 9.5 In addition to oil recovery capacity. the plan shall, as appropriate, identify sufficient quantity of containment boom available, by contract or other approved means as described in §112.2, to arrive within the required response times for oil collection and containment and for protection of fish and wildlife and sensitive environments. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments" (59 FR 14713-22, March 29, 1994) and the applicable ACP. Although 40 CFR part 112 does not set required quantities of boom for oil collection and containment, the response plan shall identify and ensure, by contract or other approved means as described in §112.2, the availability of the quantity of boom identified in the plan for this purpose. - 9.6 The plan must indicate the availability of temporary storage capacity to meet section 12.2 of this appendix. If available storage capacity is insufficient to meet this level, then the effective daily recovery capacity must be derated (downgraded) to the limits of the available storage capacity. - 9.7 The following is an example of a medium discharge volume planning calculation for equipment identification in a higher volume port area: The facility's largest aboveground storage tank volume is 840,000 gallons. Ten percent of this capacity is 84,000 gallons. Because 10 percent of the facility's largest tank, or 84,000 gallons, is greater than 36,000 gallons, 36,000 gallons is used as the planning volume. The effective daily recovery capacity is 50 percent of the planning volume, or 18,000 gallons per day. The ability of oil recovery devices to meet this capacity must be calculated using the procedures in section 6 of this appendix. Temporary storage capacity available on-scene must equal twice the daily recovery capacity as indicated in section 12.2 of this appendix, or 36,000 gallons per day. This is the information the facility owner or operator must use to identify and ensure the availability of the required response resources, by contract or other approved means as described in \$112.2. The facility owner shall also identify how much boom is available for use. 10.0 Calculating Planning Volumes for a Worst Case Discharge—Animal Fats and Vegetable Oils 10.1 A facility owner or operator shall plan for a response to the facility's worst case discharge. The planning for on-water oil recovery must take into account a loss of some oil to the environment due to physical, chemical, and biological processes, potential increases in volume due to emulsification, and the potential for deposition of oil on the shoreline or on sediments. The response planning procedures for animal fats and vegetable oils are discussed in section 10.7 of this appendix. You may use alternate response planning procedures for animal fats and vegetable oils if those procedures result in environmental protection equivalent to that provided by the procedures in section 10.7 of this appendix. 10.2 The following procedures must be used by a facility owner or operator in determining the required on-water oil recovery capacity: 10.2.1 The following must be determined: the worst case discharge volume of oil in the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility (Groups A, B, C); and the facility's specific operating area. See sections 1.2.1 and 1.2.9 of this appendix for the definitions of animal fats and vegetable oils and groups thereof. Facilities that handle, store, or transport oil from different oil groups must calculate each group separately, unless the oil group constitutes 10 percent or less by
volume of the facility's total oil storage capacity. This information is to be used with Table 6 of this appendix to determine the percentages of the total volume to be used for removal capacity planning. Table 6 of this appendix divides the volume into three categories: oil lost to the environment; oil deposited on the shoreline; and oil available for on-water recovery. 10.2.2 The on-water oil recovery volume shall, as appropriate, be adjusted using the appropriate emulsification factor found in Table 7 of this appendix. Facilities that handle, store, or transport oil from different groups must compare the on-water recovery volume for each oil group (unless the oil group constitutes 10 percent or less by volume of the facility's total storage capacity) and use the calculation that results in the largest on-water oil recovery volume to plan for the amount of response resources for a worst case discharge. 10.2.3 The adjusted volume is multiplied by the on-water oil recovery resource mobilization factor found in Table 4 of this appendix from the appropriate operating area and response tier to determine the total on-water oil recovery capacity in barrels per day that must be identified or contracted to arrive on-scene within the applicable time for each response tier. Three tiers are specified. For higher volume port areas, the contracted tiers of resources must be located such that they are capable of arriving on-scene within 6 hours for Tier 1, 30 hours for Tier 2, and 54 hours for Tier 3 of the discovery of a discharge. For all other rivers and canals, inland, nearshore areas, and the Great Lakes, these tiers are 12, 36, and 60 hours. 10.2.4 The resulting on-water oil recovery capacity in barrels per day for each tier is used to identify response resources necessary to sustain operations in the applicable operating area. The equipment shall be capable of sustaining operations for the time period specified in Table 6 of this appendix. The facility owner or operator shall identify and ensure, by contract or other approved means as described in §112.2, the availability of sufficient oil spill recovery devices to provide the effective daily oil recovery capacity required. If the required capacity exceeds the applicable cap specified in Table 5 of this appendix, then a facility owner or operator shall ensure, by contract or other approved means as described in §112.2, only for the quantity of resources required to meet the cap, but shall identify sources of additional resources as indicated in section 5.4 of this appendix. The owner or operator of a facility whose planning volume exceeded the cap in 1998 must make arrangements to identify and ensure, by contract or other approved means as described in §112.2, the availability of additional capacity to be under contract by 2003, as appropriate. For a facility that handles multiple groups of oil, the required effective daily recovery capacity for each oil group is calculated before applying the cap. The oil group calculation resulting in the largest on-water recovery volume must be used to plan for the amount of response resources for a worst case discharge, unless the oil group comprises 10 percent or less by volume of the facility's oil storage capacity. 10.3 The procedures discussed in sections 10.3.1 through 10.3.3 of this appendix must be used to calculate the planning volume for identifying shoreline cleanup capacity (for Groups A and B oils). 10.3.1 The following must be determined: the worst case discharge volume of oil for the facility; the appropriate group(s) for the types of oil handled, stored, or transported at the facility (Groups A or B); and the geographic area(s) in which the facility operates (i.e., operating areas). For a facility handling, storing, or transporting oil from different groups, each group must be calculated separately. Using this information. Table 6 of this appendix must be used to determine the percentages of the total volume to be used for shoreline cleanup resource planning. 10.3.2 The shoreline cleanup planning volume must be adjusted to reflect an emulsification factor using the same procedure as described in section 10.2.2 of this appendix. 10.3.3 The resulting volume shall be used to identify an oil spill removal organization with the appropriate shoreline cleanup capability. 10.4 A response plan must identify response resources with fire fighting capability appropriate for the risk of fire and explosion at the facility from the discharge or threat of discharge of oil. The owner or operator of a facility that handles, stores, or transports Group A or B oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The facility owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan must also identify an individual to work with the fire department for Group A or B oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to a worst case scenario. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. 10.5 The following is an example of the procedure described in sections 10.2 and 10.3 of this appendix. A facility with a 37.04 million gallon (881,904 barrel) capacity of several types of vegetable oils is located in the Inland Operating Area. The vegetable oil with the highest specific gravity stored at the facility is soybean oil (specific gravity 0.922, Group B vegetable oil). The facility has ten aboveground oil storage tanks with a combined total capacity of 18 million gallons (428.571 barrels) and without secondary containment. The remaining facility tanks are inside secondary containment structures. The largest aboveground oil storage tank (3 million gallons or 71,428 barrels) has its own secondary containment. Two 2.1 million gallon (50,000 barrel) tanks (that are not connected by a manifold) are within a common secondary containment tank area, which is capable of holding 4.2 million gallons (100,000 barrels) plus sufficient freeboard. 10.5.1 The worst case discharge for the facility is calculated by adding the capacity of all aboveground vegetable oil storage tanks without secondary containment (18.0 million gallons) plus the capacity of the largest aboveground storage tank inside secondary containment (3.0 million gallons). The resulting worst case discharge is 21 million gallons or 500,000 barrels. 10.5.2 With a specific worst case discharge identified, the planning volume for on-water recovery can be identified as follows: Worst case discharge: 21 million gallons (500,000 barrels) of Group B vegetable oil Operating Area: Inland Planned percent recovered floating vegetable oil (from Table 6, column Nearshore/Inland/ Great Lakes): Inland, Group B is 20% Emulsion factor (from Table 7): 2.0 Planning volumes for on-water recovery: $21.000.000 \text{ gallons} \times 0.2 \times 2.0 = 8.400.000 \text{ gal}$ lons or 200,000 barrels. Determine required resources for on-water recovery for each of the three tiers using mobilization factors (from Table 4, column Inland/Nearshore/Great Lakes) | Inland Operating Area | Tier 1 | Tier 2 | Tier 3 | |--|--------|--------|--------| | Mobilization factor by which you multiply planning volume Estimated Daily Recovery Capacity (bbls) | .15 | .25 | .40 | | | 30,000 | 50,000 | 80,000 | 10.5.3 Because the requirements for On-Water Recovery Resources for Tiers 1, 2, and 3 for Inland Operating Area exceed the caps identified in Table 5 of this appendix, the facility owner will contract for a response of 12,500 barrels per day (bpd) for Tier 1, 25,000 bpd for Tier 2, and 50,000 bpd for Tier 3. Resources for the remaining 17,500 bpd for Tier 1, 25,000 bpd for Tier 2, and 30,000 bpd for Tier 3 shall be identified but need not be contracted for in advance. 10.5.4 With the specific worst case discharge identified, the planning volume of onshore recovery can be identified as follows: Worst case discharge: 21 million gallons (500,000 barrels) of Group B vegetable oil Operating Area: Inland Planned percent recovered floating vegetable oil from onshore (from Table 6, column Nearshore/Inland/Great Lakes): Inland. Group B is 65% Emulsion factor (from Table 7): 2.0 Planning volumes for shoreline recovery: $21,000,000 \text{ gallons} \times 0.65 \times 2.0 = 27,300,000 \text{ gal-}$ lons or 650,000 barrels 10.5.5 The facility owner or operator shall, as appropriate, also identify or contract for quantities of boom identified in the response plan for the protection of fish and wildlife and sensitive environments within the area potentially impacted by a worst case discharge from the facility. For further description of fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA's "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments," (see Appendix E to this part, section 13, for availability) and the applicable ACP. Attachment C-III to Appendix C provides a method for calculating a planning distance to fish and wildlife and sensitive environments and public drinking water intakes that may be adversely affected in the event of a worst case discharge. 10.6 The procedures discussed in sections 10.6.1 through 10.6.3 of this appendix must be used to determine appropriate response resources for facilities with Group C oils. 10.6.1 The owner or operator of a facility that handles, stores, or transports Group C oils shall, as appropriate, identify the response resources available by contract or other approved means, as described in §112.2. The equipment identified
in a response plan shall, as appropriate, include: - (1) Sonar, sampling equipment, or other methods for locating the oil on the bottom or suspended in the water column; - (2) Containment boom, sorbent boom, silt curtains, or other methods for containing the oil that may remain floating on the surface or to reduce spreading on the bottom; - (3) Dredges, pumps, or other equipment necessary to recover oil from the bottom and shoreline; - (4) Equipment necessary to assess the impact of such discharges; and - (5) Other appropriate equipment necessary to respond to a discharge involving the type of oil handled, stored, or transported. 10.6.2 Response resources identified in a response plan for a facility that handles, stores, or transports Group C oils under section 10.6.1 of this appendix shall be capable of being deployed on scene within 24 hours of discovery of a discharge. 10.6.3 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports Group C oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for Group C oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. 10.7 The procedures described in sections 10.7.1 through 10.7.5 of this appendix must be used to determine appropriate response plan development and evaluation criteria for facilities that handle, store, or transport animal fats and vegetable oils. Refer to section 11 of this appendix for information on the limitations on the use of chemical agents for inland and nearshore areas. 10.7.1 An owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must provide information in the response plan that identifies: - (1) Procedures and strategies for responding to a worst case discharge of animal fats and vegetable oils to the maximum extent practicable; and - (2) Sources of the equipment and supplies necessary to locate, recover, and mitigate such a discharge. 10.7.2 An owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must ensure that any equipment identified in a response plan is capable of operating in the geographic area(s) (i.e., operating environments) in which the facility operates using the criteria in Table 1 of this appendix. When evaluating the operability of equipment, the facility owner or operator must consider limitations that are identified in the appropriate ACPs, including: - (1) Ice conditions; - (2) Debris; - (3) Temperature ranges; and - (4) Weather-related visibility. - 10.7.3. The owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils must identify the response resources that are available by contract or other approved means, as described in §112.2. The equipment described in the response plan shall, as appropriate, include: - (1) Containment boom, sorbent boom, or other methods for containing oil floating on the surface or to protect shorelines from impact; - (2) Oil recovery devices appropriate for the type of animal fat or vegetable oil carried; and - (3) Other appropriate equipment necessary to respond to a discharge involving the type of oil carried. - 10.7.4 Response resources identified in a response plan according to section 10.7.3 of this appendix must be capable of commencing an effective on-scene response within the applicable tier response times in section 5.3 of this appendix. - 10.7.5 A response plan must identify response resources with fire fighting capability. The owner or operator of a facility that handles, stores, or transports animal fats and vegetable oils that does not have adequate fire fighting resources located at the facility or that cannot rely on sufficient local fire fighting resources must identify adequate fire fighting resources. The owner or operator shall ensure, by contract or other approved means as described in §112.2, the availability of these resources. The response plan shall also identify an individual located at the facility to work with the fire department for animal fat and vegetable oil fires. This individual shall also verify that sufficient well-trained fire fighting resources are available within a reasonable response time to respond to a worst case discharge. The individual may be the qualified individual identified in the response plan or another appropriate individual located at the facility. ## 11.0 Determining the Availability of Alternative Response Methods - 11.1 For chemical agents to be identified in a response plan, they must be on the NCP Product Schedule that is maintained by EPA. (Some States have a list of approved dispersants for use within State waters. Not all of these State-approved dispersants are listed on the NCP Product Schedule.) - 11.2 Identification of chemical agents in the plan does not imply that their use will be authorized. Actual authorization will be governed by the provisions of the NCP and the applicable ACP. #### 12.0 Additional Equipment Necessary to Sustain Response Operations - 12.1 A facility owner or operator shall identify sufficient response resources available, by contract or other approved means as described in §112.2, to respond to a medium discharge of animal fats or vegetables oils for that facility. This will require response resources capable of containing and collecting up to 36,000 gallons of oil or 10 percent of the worst case discharge, whichever is less. All equipment identified must be designed to operate in the applicable operating environment specified in Table 1 of this appendix. - 12.2 A facility owner or operator shall evaluate the availability of adequate temporary storage capacity to sustain the effective daily recovery capacities from equipment identified in the plan. Because of the inefficiencies of oil spill recovery devices, response plans must identify daily storage capacity equivalent to twice the effective daily recovery capacity required on-scene. This temporary storage capacity may be reduced if a facility owner or operator can demonstrate by waste stream analysis that the efficiencies of the oil recovery devices, ability to decant waste, or the availability of alternative temporary storage or disposal locations will reduce the overall volume of oily material storage. 12.3 A facility owner or operator shall ensure that response planning includes the capability to arrange for disposal of recovered oil products. Specific disposal procedures will be addressed in the applicable ACP. #### 13.0 References and Availability 13.1 All materials listed in this section are part of EPA's rulemaking docket and are located in the Superfund Docket, 1235 Jefferson Davis Highway, Crystal Gateway 1, Arlington, Virginia 22202, Suite 105 (Docket Numbers SPCC-2P, SPCC-3P, and SPCC-9P). The docket is available for inspection between 9 a.m. and 4 p.m., Monday through Friday, excluding Federal holidays. Appointments to review the docket can be made by calling 703-603-9232. Docket hours are subject to change. As provided in 40 CFR part 2, a reasonable fee may be charged for copying services. 13.2 The docket will mail copies of materials to requestors who are outside the Washington, DC metropolitan area. Materials may be available from other sources, as noted in this section. As provided in 40 CFR part 2, a reasonable fee may be charged for copying services. The RCRA/Superfund Hotline at 800–424–9346 may also provide additional information on where to obtain documents. To contact the RCRA/Superfund Hotline in the Washington, DC metropolitan area, dial 703–412–9810. The Telecommunications Device for the Deaf (TDD) Hotline number is 800–553–7672, or, in the Washington, DC metropolitan area, 703–412–3323. #### 13.3 Documents - (1) National Preparedness for Response Exercise Program (PREP). The PREP draft guidelines are available from United States Coast Guard Headquarters (G-MEP-4), 2100 Second Street, SW., Washington, DC 20593. (See 58 FR 53990-91, October 19, 1993, Notice of Availability of PREP Guidelines). - (2) "Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments (published in the Federal Register by DOC/NOAA at 59 FR 14713–22, March 29, 1994.). The guidance is available in the Superfund Docket (see sections 13.1 and 13.2 of this appendix). - (3) ASTM Standards. ASTM F 715, ASTM F 989, ASTM F 631-99, ASTM F 808-83 (1999). The ASTM standards are available from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959. - (4) Response Plans for Marine Transportation-Related Facilities, Interim Final Rule. Published by USCG, DOT at 58 FR 7330–76, February 5, 1993. Pt. 112, App. E TABLE 1 TO APPENDIX E-RESPONSE RESOURCE OPERATING CRITERIA | Oil Recovery Devices | | | | | |--|--|----------------------|--|--| | Operating environment | Significant wave height ¹ | Sea state | | | | Rivers and Canals Inland Great Lakes Ocean | ≤ 1 foot
≤ 3 feet
≤ 4 feet
≤ 6 feet | 1
2
2–3
3–4 | | | | Boom | | | | | | | |--|-------------------|--------------------------|----------------------------
---------------------------------|--|--| | | Use | | | | | | | Boom property | Rivers and canals | Inland | Great Lakes | Ocean | | | | Significant Wave Height 1 Sea State Boom height—inches (draft plus freeboard) Reserve Buoyancy to Weight Ratio | | ≤ 3
2
18–42
2:1 | ≤ 4
2–3
18–42
2:1 | ≤ 6
3-4
≥42
3:1 to 4:1 | | | | Total Tensile Strength—pounds | 4,500 | 15,000–
20,000. | 15,000–
20,000. | ≥20,000 | | | | Skirt Fabric Tensile Strength—pounds | 200
100 | 300
100 | 300
100 | 500
125 | | | ¹ Oil recovery devices and boom *shall* be at least capable of operating in wave heights up to and including the values listed in Table 1 for each operating environment. ## TABLE 2 TO APPENDIX E-REMOVAL CAPACITY PLANNING TABLE FOR PETROLEUM OILS | Spill location | Rivers and canals | | | Nearsho | re/Inland/Great | Lakes | |---|---------------------------------------|--|----------------------|---------------------------------------|--|----------------------| | Sustainability of on-water oil recovery | 3 days | | | 4 days | | | | Oil group ¹ | Percent nat-
ural dissipa-
tion | Percent re-
covered
floating oil | Percent oil onshore | Percent nat-
ural dissipa-
tion | Percent re-
covered
floating oil | Percent oil onshore | | 1—Non-persistent oils | 80
40
20
5 | 10
15
15
20 | 10
45
65
75 | 80
50
30
10 | 20
50
50
50 | 10
30
50
70 | ¹The response resource considerations for non-petroleum oils other than animal fats and vegetable oils are outlined in section 7.7 of this appendix. NOTE: Group 5 oils are defined in section 1.2.8 of this appendix; the response resource considerations are outlined in section 7.6 of this appendix. ## TABLE 3 TO APPENDIX E—EMULSIFICATION FACTORS FOR PETROLEUM OIL GROUPS 1 | Non-Persistent Oil: | | |--|-----| | Group 1 | 1.0 | | Persistent Oil: | | | Group 2 | 1.8 | | Group 3 | 2.0 | | Group 4 | 1.4 | | Group 5 oils are defined in section 1.2.7 of this appendix; the response resource considerations are outlined in section | | | 7.6 of this appendix. | | ¹ See sections 1.2.2 and 1.2.7 of this appendix for group designations for non-persistent and persistent oils, respectively. #### TABLE 4 TO APPENDIX E-ON-WATER OIL RECOVERY RESOURCE MOBILIZATION FACTORS | Operating area | Tier 1 | Tier 2 | Tier 3 | |--|--------|--------|--------| | Rivers and Canals Inland/Nearshore Great Lakes | 0.30 | 0.40 | 0.60 | | | 0.15 | 0.25 | 0.40 | Note: These mobilization factors are for total resources mobilized, not incremental response resources. ### TABLE 5 TO APPENDIX E-RESPONSE CAPABILITY CAPS BY OPERATING AREA | | Tier 1 | Tier 2 | Tier 3 | |--|--------------|--------------|---------------| | February 18, 1993: All except Rivers & Canals, Great Lakes | 10K bbls/dav | 20K bbls/dav | 40K bbls/dav. | #### 40 CFR Ch. I (7-1-08 Edition) TABLE 5 TO APPENDIX E-RESPONSE CAPABILITY CAPS BY OPERATING AREA-Continued | | Tier 1 | Tier 2 | Tier 3 | |---|----------------|----------------|----------------| | Great Lakes | 5K bbls/day | 10K bbls/day | 20K bbls/day. | | Rivers & Canals | 1.5K bbls/day | 3.0K bbls/day | 6.0K bbls/day. | | February 18, 1998: | - | | | | All except Rivers & Canals, Great Lakes | 12.5K bbls/day | 25K bbls/day | 50K bbls/day. | | Great Lakes | 6.35K bbls/day | 12.3K bbls/day | 25K bbls/day. | | Rivers & Canals | 1.875K bbls/ | 3.75K bbls/day | 7.5K bbls/day. | | | day | _ | • | | February 18, 2003: | - | | | | All except Rivers & Canals, Great Lakes | TBD | TBD | TBD. | | Great Lakes | TBD | TBD | TBD. | | Rivers & Canals | TBD | TBD | TBD. | Note: The caps show cumulative overall effective daily recovery capacity, not incremental increases. #### TABLE 6 TO APPENDIX E-REMOVAL CAPACITY PLANNING TABLE FOR ANIMAL FATS AND VEGETABLE OILS | Spill location | Rivers and canals | | Rivers and canals | | Nearsho | ore/Inland/Grea | t Lakes | |---|---------------------------|--|---|---------------------------|--|---|---------| | Sustainability of on-water oil recovery | 3 days | | 4 days | | | | | | Oil group ¹ | Percent nat-
ural loss | Percent re-
covered
floating oil | Percent re-
covered oil
from on-
shore | Percent nat-
ural loss | Percent re-
covered
floating oil | Percent re-
covered oil
from on-
shore | | | Group A | 40
20 | 15
15 | 45
65 | 50
30 | 20
20 | 30
50 | | ¹ Substances with a specific gravity greater than 1.0 generally sink below the surface of the water. Response resource considerations are outlined in section 10.6 of this appendix. The owner or operator of the facility is responsible for determining appropriate response resources for Group C oils including locating oil on the bottom or suspended in the water column; containment boom or other appropriate methods for containing oil that may remain floating on the surface; and dredges, pumps, or other equipment to recover animal fats or vegetable oils from the bottom and shoreline. Note: Group C oils are defined in sections 1.2.1 and 1.2.9 of this appendix; the response resource procedures are discussed in section 10.6 of this appendix. #### TABLE 7 TO APPENDIX E-EMULSIFICATION FACTORS FOR ANIMAL FATS AND VEGETABLE OILS | Oil Group ¹ : | | |--------------------------|-----| | Group A | 1.0 | | Group B | 2.0 | ¹Substances with a specific gravity greater than 1.0 generally sink below the surface of the water. Response resource considerations are outlined in section 10.6 of this appendix. The owner or operator of the facility is responsible for determining appropriate response resources for Group C oils including locating oil on the bottom or suspended in the water column; containment boom or other appropriate methods for containing oil that may remain floating on the surface; and dredges, pumps, or other equipment to recover animal fats or vegetable oils from the bottom and shoreline. Note: Group C oils are defined in sections 1.2.1 and 1.2.9 of this appendix; the response resource procedures are discussed in section 10.6 of this appendix. ## ATTACHMENTS TO APPENDIX E #### Attachment E-1 --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Petroleum Oils | Part I <u>Background Information</u> | | | | |--------------------------------------|------------------------|-------------------|-------------| | Step (A) Calculate Worst Case | Discharge in barrels | (Appendix D) | | | | | | (A) | | | | | | | Step (B) Oil Group¹ (Table 3 ar | nd section 1.2 of this | appendix) . | | | | | | | | Step (C) Operating Area (choos | e one) | Near | or Rivers | | beep (e, operating med (enough | | shore/Inla | and | | | | nd Great
Lakes | Canals | | Step (D) Percentages of Oil (T | able 2 of this append: | ix) | | | toop (1) recommended of our (1 | and I of only appoint | , | | | Percent Lost to | Percent Recovered | | Percent | | Natural Dissipation | Floating Oil | 1 - | Oil Onshore | | | | | | | (D1) | (D2) | | (D3) | | | | | | | Step (E1) On-Water Oil Recover | | | | | | 100 | | (E1) | | | | | | | Step (E2) Shoreline Recovery | Step (D3) x Step (A) | | | | | 100 | | (E2) | | | | | | | | | | | | Step (F) Emulsification Factor | | | | | (Table 3 of this appendix) . | | | | | | | | (F) | | Step (G) On-Water Oil Recovery | Resource Mobilization | 1 Factor | | | (Table 4 of this appendix) | | | | | Tier 1 | Tier 2 | 1 | Tier 3 | | | | | | | (G1) | (G2) | | (G3) | ¹ A facility that handles, stores, or transports multiple groups of oil must do separate calculations for each oil group on site except for those oil groups that constitute 10 percent or less by volume of the total oil storage capacity at the facility. For purposes of this calculation, the volumes of all products in an oil group must be summed to determine the percentage of the facility's total oil storage capacity. #### Attachment E-1 (continued) --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Petroleum Oils Part II On-Water Oil Recovery Capacity (barrels/day) Tier 1 Tier 2 Tier 3 Step (E1) x Step (F) x Step (G1) Step (E1) x Step (F) x Step (G2) Step (E1) x Step (F) x Step (G3) Part III <u>Shoreline Cleanup Volume</u> (barrels) . . Step (E2) x Step (F) Part IV On-Water Response Capacity By Operating Area (Table 5 of this appendix) (Amount needed to be contracted for in barrels/day) Tier 1 Tier 2 Tier 3 (J1) (J2) (J3) Part V <u>On-Water Amount Needed to be Identified, but not Contracted for in Advance</u> (barrels/day) Tier 1 Tier 2 Tier 3 Part II Tier 1 - Step (J1) Part II Tier 2 - Step (J2) Part II Tier 3 - Step (J3) NOTE: To convert from barrels/day to gallons/day, multiply the quantities in Parts II through V by 42 gallons/barrel. ## Pt. 112, App. E Attachment E-1 Example --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Petroleum Oils | Part I <u>Background Information</u> | | |---|---------------------| | Step (A) Calculate Worst Case Discharge in barrels (Append | ix D) 170,000 | | | (A) : | | | | | Step (B) Oil Group¹ (Table 3 and section 1.2 of this append | lix) . 4 | | Step (C) Operating Area (choose one) X Near shore/Inla nd Great | or
Rivers
and | | Lakes | Canals | | Step (D) Percentages of Oil (Table 2 of this appendix) | | | | | | Percent Lost to Percent Recovered Natural
Dissipation Floating Oil | Percent Oil Onshore | | 10 50 | 70 | | (D1) (D2) | (D3) | | Step (E1) On-Water Oil Recovery Step (D2) x Step (A) | 85,000 | | 100 | (E1) | | 100 | (21) | | Step (E2) Shoreline Recovery Step (D3) x Step (A) | 119,000 | | 100 | (E2) | | 100 | (52) | | Step (F) Emulsification Factor | 1.4 | | (Table 3 of this appendix) | | | | (F) | | Step (G) On-Water Oil Recovery Resource Mobilization Factor
(Table 4 of this appendix) | c . | | | | | Tier 1 Tier 2 | Tier 3 | | 0.15 | 0.40 | | (G1) (G2) | (G3) | A facility that handles, stores, or transports multiple groups of oil must do separate calculations for each oil group on site except for those oil groups that constitute 10 percent or less by volume of the total oil storage capacity at the facility. For purposes of this calculation, the volumes of all products in an oil group must be summed to determine the percentage of the facility's total oil storage capacity. Part II Tier 1 - Step (J1) ## 40 CFR Ch. I (7-1-08 Edition) Part II Tier 3 - Step (J3) #### Attachment E-1 Example (continued) --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Petroleum Oils Part II On-Water Oil Recovery Capacity (barrels/day) | Tier 1 | | Tier 2 | | Tier 3 | |--|---|-------------------------------------|--|-------------------------------------| | 17,850 | | 29,750 | | 47,600 | | Step (E1) x Step (F) x
Step (G1) | | Step (E1) x Step (F) x
Step (G2) | | Step (E1) x Step (F) x
Step (G3) | | Part III <u>Shoreline Cleanup Volume</u> (barrels) | | | | | | Part IV <u>On-Water Response Capacity By Operating Area</u> (Table 5 of this appendix) (Amount needed to be contracted for in barrels/day) | | | | | | Tier 1 | | Tier 2 | | Tier 3 | | 10,000 | | 20,000 | | 40,000 | | (J1) | | (J2) | | (13) | | Part V <u>On-Water Amount Needed to be Identified, but not Contracted for in Advance</u> (barrels/day) | | | | | | Tier 1 | | Tier 2 | | Tier 3 | | 7,850 | 1 | 9,750 | | 7,600 | NOTE: To convert from barrels/day to gallons/day, multiply the quantities in Parts II through V by 42 gallons/barrel. Part II Tier 2 - Step (J2) #### Attachment E-2 --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Animal Fats and Vegetable Oils | Part I <u>Background Information</u> | | | |---|-------------------------------|--------------| | Step (A) Calculate Worst Case I | ischarge in barrels (Appendi: | x D) | | * * * * | 3 | (A) | | | | (A) | | | | | | Step (B) Oil Group ¹ (Table 7 an | d section 1.2 of this appendi | .x) . | | - | | | | | | | | Step (C) Operating Area (choose | | or
Rivers | | | shore/Inla | a Rivers | | | Lakes | Canals | | Step (D) Percentages of Oil (Ta | blo 6 of this appendix | | | Step (b) Percentages of Off (18 | ble 6 of this appendix, | | | Percent Lost to | Percent Recovered | Percent | | Natural Dissipation | Floating Oil | Oil Onshore | | | | | | | | | | (D1) | (D2) | (D3) | | | | | | Step (E1) On-Water Oil Recovery | Step (D2) x Step (A) | | | | 100 | (E1) | | | | | | Grand (TO) Glassa Line December | Gt (D3) Gt (3) | | | Step (E2) Shoreline Recovery | Step (D3) x Step (A) | | | | 100 | (E2) | | | | | | Step (F) Emulsification Factor | | | | (Table 7 of this appendix) . | | | | • | ' | (F) | | | | (E) | | Step (G) On-Water Oil Recovery | Resource Mobilization Factor | | | (Table 4 of this appendix) | | | | | | | | Tier 1 | Tier 2 | Tier 3 | | 1101 | 1131 2 | 2202 0 | | | | | | | | | | (G1) | (G2) | (G3) | ¹ A facility that handles, stores, or transports multiple groups of oil must do separate calculations for each oil group on site except for those oil groups that constitute 10 percent or less by volume of the total oil storage capacity at the facility. For purposes of this calculation, the volumes of all products in an oil group must be summed to determine the percentage of the facility's total oil storage capacity. Part II Tier 3 - Step (J3) ## Pt. 112, App. E Part II Tier 1 - Step (J1) # Attachment E-2 (continued) -Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Animal Fats and Vegetable Oils Part II On-Water Oil Recovery Capacity (barrels/day) Tier 3 Tier 1 Tier 2 Step (E1) x Step (F) x Step (G1) Step (E1) x Step (F) x Step (G2) Step (E1) x Step (F) x Step (G3) Part III Shoreline Cleanup Volume (barrels) . . Step (E2) x Step (F) Part IV On-Water Response Capacity By Operating Area (Table 5 of this appendix) (Amount needed to be contracted for in barrels/day) Tier 1 Tier 2 Tier 3 (J1) (J2) (J3) Part V On-Water Amount Needed to be Identified, but not Contracted for in Advance (barrels/day) Tier 1 Tier 2 Tier 3 NOTE: To convert from barrels/day to gallons/day, multiply the quantities in Parts II through V by 42 gallons/barrel. Part II Tier 2 - Step (J2) #### Attachment E-2 Example --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Animal Fats and Vegetable Oils | Part I Background Informat | <u>ion</u> | | |---|---|--------------------------------| | Step (A) Calculate Worst C (Appendix D) | ase Discharge in barrels | 500,000 | | | | (A) | | Step (B) Oil Group¹ (Table appendix) | 7 and section 1.2 of this | | | Step (C) Operating Area (cone) | hoose X Near shore/Inl and Great Lakes | or
Rivers
and
Canals | | Step (D) Percentages of Oi | l (Table 6 of this appendix) | | | Percent Lost to
Natural
Dissipation | Percent Recovered Floating Oil | Percent Oil
Onshore | | 30 | 20 | 50 | | (D1) | (D2) | (D3) | | Step (E1) On-Water Oil Rec | overy Step (D2) x Step (A) | 100,000 | | - | 100 | (E1) | | | | | | Step (E2) Shoreline Recove | ry <u>Step (D3) x Step (A)</u> | 250,000 | | | 100 | (E2) | | Step (F) Emulsification Fa
(Table 7 of this appendix | | 2.0 | | | | (F) | | Step (G) On-Water Oil Reco | overy Resource Mobilization | Factor | | Tier 1 | Tier 2 | Tier 3 | | 0.15 | 0.25 | 0.40 | | (G1) | (G2) | (G3) | | A facility that handles, stores, or to | ansports multiple groups of oil must do s | separate calculations for each | ¹ A facility that handles, stores, or transports multiple groups of oil must do separate calculations for each oil group on site except for those oil groups that constitute 10 percent or less by volume of the total oil storage capacity at the facility. For purposes of this calculation, the volumes of all products in an oil group must be summed to determine the percentage of the facility's total oil storage capacity. #### 40 CFR Ch. I (7-1-08 Edition) Attachment E-2 Example (continued) --Worksheet to Plan Volume of Response Resources for Worst Case Discharge - Animal Fats and Vegetable Oils (continued) Part II On-Water Oil Recovery Capacity (barrels/day) | Tier 1 | Tier 2 | Tier 3 | |---|-------------------------------------|-------------------------------------| | 30,000 | 50,000 | 80,000 | | Step (E1) x Step (F) x
Step (G1) | Step (E1) x Step (F) x
Step (G2) | Step (E1) x Step (F) x
Step (G3) | | Part III <u>Shoreline</u> | Cleanup Volume (barrels) | 500,000
Step (E2) x Step (F) | | Part IV <u>On-Water Res</u>
(Table 5 of this app
(Amount needed to be | | | | Tier 1 | Tier 2 | Tier 3 | | 12,500 | 25,000 | 50,000 | | (J1) | (J2) | (13) | Part V On-Water Amount Needed to be Identified, but not Contracted for in Advance (barrels/day) | Part II Tier 1 - Step (J1) | Part II Tier 2 - Step (J2) | Part II Tier 3 - Step (J3) | |----------------------------|----------------------------|----------------------------| | 17,500 | 25,000 | 30,000 | | Tier 1 | Tier 2 | Tier 3 | NOTE: To convert from barrels/day to gallons/day, multiply the quantities in Parts II through V by 42 gallons/barrel. 30, 2000; 65 FR 47325, Aug. 2, 2000; 66 FR 47325, Aug. 2, 2000; 66 FR 35460, 35461, June 29, 2001] APPENDIX F TO PART 112—FACILITY-SPECIFIC RESPONSE PLAN #### Table of Contents - 1.0 Model Facility-Specific Response Plan - 1.1 Emergency Response Action Plan - 1.2 Facility Information - 1.3 Emergency Response Information - 1.3.1 Notification - 1.3.2 Response Equipment List - 1.3.3 Response Equipment Testing/Deployment - 1.3.4 Personnel - 1.3.5 Evacuation Plans - 1.3.6 Qualified Individual's Duties - 1.4 Hazard Evaluation - 1.4.1 Hazard Identification - 1.4.2 Vulnerability Analysis - 1.4.3 Analysis of the Potential for an Oil Spill - 1.4.4 Facility Reportable Oil Spill History - 1.5 Discharge Scenarios - 1.5.1 Small and Medium Discharges 1.5.2 Worst Case Discharge - 1.6 Discharge Detection Systems - 1.6.1 Discharge Detection By Personnel - 1.6.2 Automated Discharge Detection - 86